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Abstract

A well known theorem of Kuratowski states that a graph is planar iff it contains no
subdivision of K5 or K3,3. Seymour conjectured in 1977 that every 5-connected nonplanar
graph contains a subdivision of K5. In this paper, we prove several results about inde-
pendent paths (no vertex of a path is internal to another), which are then used to prove
Seymour’s conjecture for two classes of graphs. These results will be used in a subse-
quent paper to prove Seymour’s conjecture for graphs containing K−

4
, which is a step in a

program to approach Seymour’s conjecture.
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1 Introduction

Only finite simple graphs are considered. We follow Diestel [5] for notation and terminology
not explicitly defined. In particular, for a graph K we use TK to denote a subdivision of K.
Thus, the well known Kuratowski’s theorem can be stated as follows: A graph is planar iff it
contains no TK5 or TK3,3. It is known that any 3-connected nonplanar graph other than K5

contains a TK3,3. Seymour [16] conjectured in 1977 that every 5-connected nonplanar graph
contains a TK5, which was also posed by Kelmans [10] in 1979.

For convenience, the vertices with degree 4 in a TK5 are called branch vertices. Suppose G
is a 5-connected graph and an edge xy of G is contained in three triangles, say xyv1x, xyv2x and
xyv3x. Then G−{x, y} is 3-connected, and hence contains a cycle C such that {v1, v2, v3} ⊆ C.
Clearly, C and these three triangles form a TK5 in G with branch vertices x, y, v1, v2, v3.

A graph has an edge in two triangles iff it contains K−
4

, the graph obtained from K4 by
deleting an edge. As a first step in a program to approach Seymour’s conjecture, we wish to
exclude K−

4
, i.e., to prove it for graphs containing a K−

4
. Note that K−

4
-free graphs have nice

structural properties; for example, it is shown in [7] that if G is 5-connected and K−
4

-free then
G contains a contractible edge (see [8] for more results).

It turns out to be quite difficult to find a TK5 in a 5-connected nonplanar graph containing
K−

4
. We shall see in a subsequent paper that given a K−

4
in a 5-connected nonplanar graph,

we may be forced to find a TK5 in which no vertex of this K−
4

is a branch vertex.
The paths P1, . . . , Pk are said to be independent if for any 1 ≤ i 6= j ≤ k no vertex of Pi is

an internal vertex of Pj . In this paper we prove several results on independent paths, which
will be used to prove Seymour’s conjecture for two classes of graphs. All these results will be
used in a subsequent paper to prove Seymour’s conjecture for graphs containing K−

4
.

We use ∅ to denote both the empty set and the empty graph. Let G be a graph; then V (G)
and E(G) denote the vertex set and edge set of G, respectively. By H ⊆ G, we mean that H
is a subgraph of G. For X ⊆ V (G) or X ⊆ E(G), G[X] denotes the subgraph of G induced by
X. For X ⊆ V (G) ∪ E(G) or X ⊆ G, G − X denotes the graph obtained from G by deleting
the vertices in X and those edges in G incident with vertices in X. If x ∈ V (G) ∪ E(G), we
write G − x instead of G − {x}.

We can now state our first result.

Theorem 1.1 Let G be a 5-connected nonplanar graph and let x1, x2, y1, y2 be distinct vertices
of G such that G[{x1, x2, y1, y2}] ∼= K−

4
and y1y2 /∈ E(G). Suppose there is an induced path X

in G− x1x2 from x1 to x2 such that G− V (X) is 2-connected and {y1, y2} ∩ V (X) = ∅. Then
G contains a TK5 in which x1, x2, y1, y2 are branch vertices.

For subgraphs G and H of a graph, G ∪ H and G ∩ H denote the union and intersection
of G and H, respectively. We say that G and H are disjoint if V (G) ∩ V (H) = ∅. We use
G−H instead of G− V (G∩H). A separation of a graph G is a pair (G1, G2) of subgraphs of
G such that G = G1 ∪ G2, E(G1 ∩ G2) = ∅, and E(Gi) ∪ V (Gi − G3−i) 6= ∅ for i ∈ {1, 2}. If
|V (G1 ∩ G2)| = k, then (G1, G2) is a k-separation.

The following result says that whenever a 5-connected nonplanar graph has a 5-separation
and one side of the 5-separation is planar and nontrivial then it contains a TK5. By an edge
crossing we mean an intersection of two edges in a drawing of a graph in the plane (vertices
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are represented by points and edges by polygonal arcs). A drawing of a graph in the plane
without edge crossings is also said to be a planar representation of that graph.

Theorem 1.2 Let G be a 5-connected nonplanar graph and let (G1, G2) be a 5-separation in
G. Suppose |G2| ≥ 7 and G2 has a planar representation in which the vertices of V (G1 ∩ G2)
are incident with a common face. Then G contains a TK5.

Another step in our program is to prove that if G is a 5-connected nonplanar graph with
a 5-separation (G1, G2) such that |Gi| ≥ 2 for i = 1, 2 then G admits a TK5. This was also
suggested by Kawarabayashi.

One of the key ideas in our proof is to find, in a 5-connected graph, an induced path with
given ends whose removal results in a graph that is at least 2-connected. This is related to the
conjecture of Lovász [13] that there is a minimum integer c(k) > 0 such that for any integer
k ≥ 1 and any two vertices u and v in a c(k)-connected graph G, there is a path P from u
to v in G such that G − V (P ) is k-connected. A result of Tutte [20] implies c(1) = 3. That
c(2) = 5 follows from results of Chen, Gould and Yu [3] and Kriesell [12], which are further
extended in [4, 9].

Let x1, x2, y1, y2 be vertices of a K−
4

in a 5-connected nonplanar graph G such that y1y2 /∈
E(G). We show in Section 2 that there is an induced path P in G−{x1x2, x1y1, x1y2, x2y1, x2y2}
between x1 and x2 such that {y1, y2} 6⊆ V (P ) and G−V (P ) is 2-connected. We then prove The-
orem 1.1 in Section 3 (the case when {y1, y2}∩V (P ) = ∅), using a result of Watkins and Mes-
ner [21] on cycles through three given vertices. (The remaining case when |{y1, y2}∩V (P )| = 1
is more difficult, and will be proved in another paper with the help of Theorem 1.2.) In Section
4, we prove Theorem 1.2.

We mention several results and problems related to Seymour’s conjecture. Mader [14]
proved that if G is a simple graph with n 6= 3 vertices and at least 3n − 5 edges then G
contains a TK5, establishing a conjecture of Dirac [6]. Kézdy and McGuiness [11] showed that
Seymour’s conjecture if true would imply Mader’s result. Seymour’s conjecture is also related
to a conjecture of Hajós (see [1]) that every graph containing no TKk+1 is k-colorable. Hajós’
conjecture is false for k ≥ 6 [1] and true for k = 1, 2, 3, and remains open for the case k = 4
and k = 5.

We conclude this section with additional notation and terminology. Let G be a graph. If
there is no confusion, we may write S ⊆ G instead of S ⊆ V (G) or S ⊆ E(G), and write x ∈ G
instead of x ∈ V (G) or x ∈ E(G). Let Y ⊆ G; then NG(Y ), or N(Y ) if G is understood,
denotes the set of vertices in V (G) − V (Y ) adjacent to vertices in V (Y ). If Y = {y} ⊆ V (G),
then we use NG(y) or N(y) instead of NG({y}) or N({y}). Let T be a set of 2-element subsets
of V (G); then G + T denotes the graph with vertex set V (G) and edge set E(G) ∪ T . If
T = {{x, y}}, we write G + xy instead of G + {{x, y}}.

Given a path P in a graph and x, y ∈ V (P ), xPy denotes the subpath of P between x and
y (inclusive). The ends of the path P are the vertices of the minimum degree in P , and the
other vertices of P are its internal vertices. A path P with ends u and v is also said to be from
u to v or between u and v. Let H1 and H2 be subgraphs of G; a path P in G is an H1-H2 path
if P has one end in H1 and another in H2, and is otherwise disjoint from H1 ∪ H2. A path P
from x to y in a graph G is said to be internally disjoint from H ⊆ G if P ∩ H ⊆ {x, y}.

Let G be a graph. A set S ⊆ V (G) is a k-cut or a cut of size k in G, where k is a
positive integer, if |S| = k and G has a separation (G1, G2) such that V (G1 ∩ G2) = S and
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V (Gi − S) 6= ∅ for i ∈ {1, 2}. If v ∈ V (G) and {v} is a cut of G, then v is said to be a cut
vertex of G.

For a subgraph H of a graph G, an H-bridge of G is a subgraph of G, say B, for which
there exists a component D of G−V (H) such that B is induced by the edges which are either
contained in D or from D to H. The vertices in H that are neighbors of D are called the
attachments of this H-bridge. For S ⊆ V (G), the G[S]-bridges of G are also called S-bridges.

2 Nonseparating paths

In this section we prove three lemmas, two on nonseparating paths and one on independent
paths. A nonsepararting path in a graph G is a path P such that G− V (P ) is connected. We
need the following concept of connectivity.

Definition 2.1 Let G be a graph and S ⊆ V (G), and let k be a positive integer. We say that
G is (k, S)-connected if, for any cut T of G with |T | < k, every component of G− T contains
a vertex from S.

We also need a result of Seymour [17]; equivalent formulations can be found in [2, 18,19].

Theorem 2.2 (Seymour) Let G be a graph and let s1, s2, t1, t2 be distinct vertices of G. Then
either G contains disjoint paths from s1 to s2 and from t1 to t2, or there exist pairwise disjoint
sets Ai ⊆ V (G) (k ≥ 0 and 1 ≤ i ≤ k), such that

(a) for i 6= j, N(Ai) ∩ Aj = ∅,

(b) for 1 ≤ i ≤ k, |N(Ai)| ≤ 3, and

(c) the graph, obtained from G by (for each i) deleting Ai and adding new edges joining every
pair of distinct vertices in N(Ai), can be drawn in a closed disc with no edge crossings
such that s1, t1, s2, t2 occur on the boundary of the disc in cyclic order.

As a consequence, if G is (4, {s1, s2, t1, t2})-connected, then either G has disjoint paths
from s1 to s2 and from t1 to t2, or G can be drawn in a closed disc in the plane with no edge
crossings such that s1, t1, s2, t2 occur on the boundary in cyclic order.

Let G be a graph; a chain of blocks in G is a sequence B1B2...Bk such that each Bi is a
block of G, Bi ∩ Bj = ∅ when |i − j| ≥ 2, and |V (Bi ∩ Bi+1)| = 1 for 1 ≤ i ≤ k − 1. If k = 1
and x, y ∈ V (B1), or if k ≥ 2 and x ∈ V (B1 − B2) and y ∈ V (Bk − Bk−1), then B1B2...Bk is
said to be a chain of blocks from x to y (or from x, or from y).

The lemma below allows one to modify an existing path to a good nonseparating path.

Lemma 2.3 Let G be a graph and let x1, x2, y1, y2 be distinct vertices of G such that G is
(5, {x1, x2, y1, y2})-connected. Suppose X is an induced path in G from x1 to x2, and H is a
chain of blocks in G − V (X) from y1 to y2. Then precisely one of the following holds:

(i) H = y1y2 and G− y1y2 can be drawn in a closed disc in the plane without edge crossings
such that x1, y1, x2, y2 occur on the boundary of the disc in this cyclic order.
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(ii) There is an induced path X ′ from x1 to x2 such that H ⊆ G− V (X ′), and G− V (X ′) is
a chain of blocks from y1 to y2.

Proof. First, we may assume that if y1y2 ∈ E(G) then H 6= y1y2; in particular, |V (H)| ≥ 3.
For, suppose y1y2 ∈ E(G) and H = y1y2. If G− y1y2 contains disjoint paths X ′, Y from x1, y1

to x2, y2, respectively, then we see that in G − X ′, {y1, y2} is contained in a block H ′ which
contains the cycle H ∪Y ; so we may replace X,H by X ′,H ′, respectively. On the other hand,
(i) follows from Lemma 2.2 and the assumption that G is (5, {x1, x2, y1, y2})-connected.

We now choose such X and H that

(1) H is maximal (under subgraph containment), and

(2) subject to (1), the number of components of G − V (X) is minimum.

Next, we show that G−V (X) is connected. For, suppose there is a component of G−V (X)
disjoint from H, and let D be such a component. Let v1, v2 denote the neighbors of D on
X with v1Xv2 maximal. (D has at least 5 neighbors on X; so v1v2 /∈ E(G).) Since G
is (5, {x1, x2, y1, y2})-connected, v1Xv2 − {v1, v2} contains a neighbor of some component of
G− V (X) other than D, say C. Now let X ′ be obtained from X by deleting v1Xv2 −{v1, v2}
and adding an induced path in G[V (D) ∪ {v1, v2}] from v1 to v2. Let D′ denote the union of
those components of D − X ′ with no neighbor in v1Xv2 − {v1, v2}. (Possible D′ = ∅.) We
choose X ′ so that

(3) D′ is minimal.

If D′ = ∅ then (D − X ′) ∪ C ∪ (v1Xv2 − {v1, v2}) is contained in a component of G − X ′,
and the number of components of G − V (X ′) is smaller than G − V (X), contradicting to (2)
(since H will not get smaller). So we may assume D′ 6= ∅. Let D1, . . . ,Dk be the components
of D′. Let ai, bi (1 ≤ i ≤ k) denote the neighbors of Di in v1X

′v2 with aiX
′bi maximal.

Since G is (5, {x1, x2, y1, y2})-connected, {ai, bi, v1, v2} in not a cut in G, so there exists ci ∈
aiX

′bi −{ai, bi} such that ci has a neighbor in D− (X ′∪Di) or in v1Xv2 −{v1, v2}. If ci has a
neighbor that belongs to v1Xv2−{v1, v2}, or that is not in D′ but is contained in a component
of D−X ′, then let X ′′ be obtained from X ′ by deleting aiX

′bi−{ai, bi} and adding an induced
path between ai and bi in G[V (Di)∪{ai, bi}]; it is easy to see that X ′′ contradicts the choice of
X ′ in (3). Thus, for any 1 ≤ i ≤ k, N(aiX

′bi −{ai, bi}) ⊆ X ′∪D′. Therefore,
⋃k

i=1
aiX

′bi is a
subpath of v1X

′v2; let a, b denote its ends. Now {a, b, v1, v2} is not a cut in G, so there exists
c ∈ aX ′b−{a, b} such that c has a neighbor in v1Xv2 −{v1, v2}, or in a component of D−X ′

that is not a component of D′. Then there exists some 1 ≤ i ≤ k such that c ∈ aiX
′bi−{ai, bi},

which is a contradiction since we have shown that N(aiX
′bi − {ai, bi}) ⊆ X ′ ∪ D′.

Having shown that G − V (X) is connected, we may now assume that G − V (X) 6= H; as
otherwise X ′ := X is the desired path for (ii). Let D be an arbitrary H-bridge of G − V (X)
with V (D)∩V (H) = {v}. Let v1, v2 denote the neighbors of D−v on X with v1Xv2 maximal.

Suppose there are independent paths Q,R in G from v1Xv2 − {v1, v2} to distinct vertices
of H which are also internally disjoint from D ∪ X ∪ H. Then let X ′ be obtained from X by
deleting v1Xv2 −{v1, v2} and adding an induced path in G[V (D− v)∪{v1, v2}] from v1 to v2.
Clearly, in G− V (X ′) the chain of blocks from y1 to y2 contains H ∪Q∪R, contradicting (1).
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So all paths from v1Xv2−{v1, v2} to H internally disjoint from D∪X∪H must end at the
same vertex, say u, in H. Moreover, at least one such path has length at least 2; for otherwise,
because |V (H)| ≥ 3, {v, u, v1, v2} would be a 4-cut in G (contradicting the assumption that G
is (5, {x1, x2, y1, y2})-connected). Hence there exists some H-bridge C of G− V (X) such that
V (C ∩ H) = {u} and C − u contains a neighbor of v1Xv2 − {v1, v2}. Let u1, u2 denote the
neighbors of C − u on X with u1Xu2 maximal.

Suppose v1Xv2 ⊆ u1Xu2. Then since G is (5, {x1, x2, y1, y2})-connected, {u, v, u1, u2} is
not a cut in G. Hence, since |V (H)| ≥ 3, there is a path R in G from u1Xu2 − {u1, u2} to
H − {u, v} internally disjoint from C ∪ D ∪ X ∪ H. Let X ′ be obtained from X by deleting
u1Xu2 − {u1, u2} and adding an induced path in G[V (C − u) ∪ {u1, u2}] from u1 to u2.
Clearly, in G−V (X ′) the chain of blocks from y1 to y2 contains H ∪R and part of D∪u1Xu2,
contradicting (1).

If u1Xu2 ⊆ v1Xv2, then the same argument above (by simply exchanging the roles of
C, u, u1, u2 with D, v, v1, v2, respectively) gives a contradiction to (1).

So neither v1Xv2 nor u1Xu2 is contained in the other. By symmetry we may assume
that x1, u1, v1, u2, v2, x2 occur on X in this order. Since G is (5, {x1, x2, y1, y2})-connected,
{u, v, u1, v2} is not a cut in G. Hence, since |V (H)| ≥ 3, there is a path R in G from
r ∈ V (u1Xv2) − {u1, v2} to H − {u, v} internally disjoint from C ∪ D ∪ X ∪ H. Note that
r /∈ v1Xv2 − {v1, v2}, and so r ∈ u1Xu2 − {u1, u2}. Let X ′ be obtained from X by deleting
u1Xu2 − {u1, u2} and adding an induced path in G[V (C − u) ∪ {u1, u2}] from u1 to u2. In
G−V (X ′), the chain of block from y1 to y2 contains H∪R and part of D∪u1Xu2, contradicting
(1).

We now prove that in a 5-connected nonplanar graph containing K−
4

, one can find a good
nonseparating path.

Lemma 2.4 Let G be a 5-connected nonplanar graph and x1, x2, y1, y2 be distinct vertices of
G such that G[{x1, x2, y1, y2}] ∼= K−

4
and y1y2 /∈ E(G). Then there is an induced path X

in G − {x1x2, x1y1, x1y2, x2y1, x2y2} from x1 to x2 such that G − V (X) is 2-connected and
{y1, y2} 6⊆ V (X).

Proof. For convenience, let G′ := G−{x1x2, x1y1, x1y2, x2y1, x2y2}. Since G is 5-connected, G′

is (5, {x1, x2, y1, y2})-connected, y1 has a neighbor y different from x1, x2, y2, and G′ − {y1, y}
contains an induced path X from x1 to x2. Let B denote the block of G′ − V (X) containing
y1y. It is possible that B = y1y.

Because G is nonplanar, (i) of Lemma 2.3 cannot occur. So viewing B as a chain of blocks
from y1 to y and applying Lemma 2.3, we conclude that there is an induced path X ′ in G′

from x1 to x2 such that B ⊆ G′ − V (X ′), and G′ − V (X ′) is a chain of blocks from y1 to y.
Suppose V (G′)− V (X ′) 6= {y1, y}. Then, since y1y ∈ B ⊆ G′ − V (X ′) and G− V (X ′) is a

chain of blocks from y1 to y, G′ − V (X ′) is 2-connected. Clearly, {y1, y2} 6⊆ G′ − V (X ′). Note
that G′ − V (X ′) = G − V (X ′). So X ′ is a desired path.

Therefore, we may assume V (G′) − V (X ′) = {y1, y}. In this case, since G is 5-connected
and y1y2 /∈ E(G), there is a vertex x ∈ V (X ′) − {x1, x2, y2}. Hence, because X ′ is induced,
x has at most four neighbors: y1, y and two vertices on X ′. This contradicts the assumption
that G is 5-connected.
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From Lemma 2.4 we see that in order to prove Seymour’s conjecture for graphs with
K−

4
, it suffices to prove Theorem 1.1 (when {y1, y2}∩V (X) = ∅) and deal with the case when

|{y1, y2}∩V (X)| = 1. (The later will be done in another paper.) Before we prove Theorem 1.1,
we need a lemma about independent paths.

Lemma 2.5 Let G be a graph and S ⊆ V (G) such that G is (4, S)-connected. Assume that
there exist a1, a2 ∈ S, a ∈ V (G) − S, and two independent paths in G − (S − {a1, a2}) from a
to a1, a2 respectively. Then there exist four independent paths in G from a to distinct vertices
in S, one from a to a1 and another from a to a2.

Proof. Since G is (4, S)-connected, |S| ≥ 4; and it follows from Menger’s theorem that there
exist four independent paths Pi, i = 1, 2, 3, 4, in G from a to bi ∈ S, respectively, and internally
disjoint from S. For convenience, let P :=

⋃
4

i=1
Pi. We choose P1, P2, P3, P4 so that ℓ :=

|{a1, a2} ∩ {b1, b2, b3, b4}| is maximum.
Note that 0 ≤ ℓ ≤ 2. If ℓ = 2 then P1, P2, P3, P4 are the desired paths. So we may assume

ℓ = 0 or ℓ = 1. By assumption, let Qi (i = 1, 2) be independent paths in G − (S − {a1, a2})
from a to ai, and let xi ∈ V (Qi ∩ P ) such that V (aiQixi ∩ P ) = {xi}.

Suppose ℓ = 0. Without loss of generality, we may assume that x2 ∈ P1. Then the paths
aP1x2 ∪ x2Q2a2, P2, P3, P4 contradict the choice of P1, P2, P3, P4 (the maximality of ℓ).

So ℓ = 1, and we may assume, without loss of generality, that a1 = b1 and a2 /∈
{b1, b2, b3, b4}.

We may assume x2 ∈ P1; otherwise, assume without loss of generality that x2 ∈ P2, and
then P1, aP2x2 ∪ x2Q2a2, P3, P4 are the desired paths for the lemma. We may also assume
x1 ∈ P1; for, otherwise, assume (without loss of generality) that x1 ∈ P2, and then aP2x1 ∪
x1Q1a1, aP1x2 ∪ x2Q2a2, P3, P4 are the desired paths for the lemma.

Now suppose there exists i ∈ {1, 2} such that Qi ∩ (P2 ∪ P3 ∪ P4) = {a}. We only deal
with i = 1; the case when i = 2 is symmetric. Suppose then that Q1 ∩ (P2 ∪ P3 ∪ P4) = {a}.
Then we may assume Q2 ∩ (P2 ∪ P3 ∪ P4) 6= {a}, since otherwise, Q1, Q2, P2, P3 are the
desired paths for the lemma. So let y2 ∈ V (Q2) ∩ V (P2 ∪ P3 ∪ P4) such that y2 6= a and
V (a2Q2y2) ∩ V (P2 ∪ P3 ∪ P4) = {y2, a}, and we may assume without loss of generality that
y2 ∈ P2. Now Q1, aP2y2 ∪ y2Q2a2, P3, P4 are the desired paths for the lemma.

Thus, we may assume that Qi ∩ (P2 ∪ P3 ∪ P4) 6= {a} for i ∈ {1, 2}. Let yi ∈ V (Qi) ∩
V (P2 ∪ P3 ∪ P4) such that yi 6= a and V (aiQiyi) ∩ V (P2 ∪ P3 ∪ P4) = {yi}. Note that
aiQixi ⊆ aiQiyi and xi 6= yi. Let x′

i ∈ V (xiQiyi ∩ P1) such that x′
iP1a is minimum. Note

that x′
1 6= x′

2. Suppose x′
1 ∈ a1P1x

′
2. Without loss of generality assume y1 ∈ P2. Then

aP2y1 ∪ y1Q1a1, aP1x
′
2 ∪ x′

2Q2a2, P3, P4 are the desired paths. Now assume x′
2 ∈ a1P1x

′
1, and

y2 ∈ P2 (without loss of generality). Then aP1x
′
1 ∪ x′

1Q1a1, aP2y2 ∪ y2Q2a2, P3, P4 are the
desired paths.

3 Proof of Theorem 1.1

We need a result of Watkins and Mesner [21] that characterizes those graphs in which no cycle
contains a set of three specified vertices. This result is also used in [23] in the reduction of
Hajós’ conjecture to 4-connected graphs. See Figure 1 for an illustration.
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Theorem 3.1 (Watkins and Mesner) Let R be a 2-connected graph and let y1, y2, v be three
distinct vertices of R. Then there is no cycle through y1, y2 and v in R if, and only if, one of
the following statements holds.

(i) There exists a 2-cut S in R and, for u ∈ {y1, y2, v}, there exist pairwise disjoint subgraphs
Du of R − S such that u ∈ Du and each Du is a union of components of R − Su.

(ii) For u ∈ {y1, y2, v}, there exist 2-cuts Su of R and pairwise disjoint subgraphs Du of R,
such that u ∈ Du, each Du is a union of components of R − Su, Sy1

∩ Sy2
∩ Sv = {z},

and Sy1
− {z}, Sy2

− {z}, Sv − {z} are pairwise disjoint.

(iii) For u ∈ {y1, y2, v}, there exist pairwise disjoint 2-cuts Su in R and pairwise disjoint
subgraphs Du of R − Su such that u ∈ Du, Du is a union of components of R − Su, and
R−V (Dy1

∪Dy2
∪Dv) has precisely two components, each containing exactly one vertex

from Su.

z

z1

z1

z2

z2

a1

b1

a2

b2

Dy1

Dy1
Dy1

Dy2
Dy2

Dy2 Dv

DvDv

Z1

Z2

Figure 1: The subgraphs Du in R, with u ∈ {y1, y2, v}.

Proof of Theorem 1.1. If there exists x ∈ V (X−{x1, x2}) such that {x, y1, y2} is contained
in some cycle, say D, in G − V (X − x), then D ∪ X ∪ G[{x1, x2, y1, y2}] is a TK5 in G, with
branch vertices x1, x2, y1, y2, x. Hence we may assume that

(1) for any x ∈ V (X − {x1, x2}), no cycle in G − V (X − x) contains {x, y1, y2}.

Let v denote the neighbor of x2 in X. Since |N(v)| ≥ 5 and X is an induced path in G,
|N(v) − V (X)| ≥ 3. Let R = G − V (X − v). Clearly, R is 2-connected. By (1), {y1, y2, v} is
not contained in any cycle in R. Hence, (i) or (ii) or (iii) of Theorem 3.1 holds (see Figure 1).
We choose X so that

(2) Dy1
∪ Dy2

∪ Dv is maximal.

We shall treat all three cases, (i), (ii) and (iii), simultaneously. For this we need some
notation. If (i) occurs let Sv := S = {z1, z2}, and if (ii) or (iii) occurs let Sv = {z1, z2}.
Let Zi denote the component of R − V (Dy1

∪ Dy2
∪ Dv) containing zi. If (i) occurs then let

a1 = a2 = z1 and b1 = b2 = z2; and if (iii) occurs let Sy1
= {a1, b1} and Sy2

= {a2, b2} such
that a1, a2 ∈ Z1 and b1, b2 ∈ Z2. If (ii) occurs let Sy1

= {a1, b1} and Sy2
= {a2, b2}, and we
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know either z = z1 = a1 = a2 or z = z2 = b1 = b2 (we do not fix this notation for the purpose
of symmetry in arguments to follow).

Note that if (i) occurs then Zi := {zi} for i = 1, 2; and if (ii) or (iii) occurs then by (2) and
the fact that R is 2-connected, Su ∩ V (Zi), for u ∈ {y1, y2, v}, are not cuts in Zi. Also note
that if (ii) occurs, then Z1 = Z2, or Z1 6= Z2 and Z1 = {z1}, or Z1 6= Z2 and Z2 = {z2}. So
the case when (ii) occurs with Z1 6= Z2 may also be viewed as that when (iii) occurs. We now
prove the following claim.

(3) For any x ∈ V (Z1), Z1 − z2 has independent paths A1, A2 from {x, z1} to a1, a2, and
Z1 − z2 has a path A between a1 and a2 and independent from z1; for any x ∈ V (Z2),
Z2 − z1 has independent paths B1, B2 from {x, z2} to b1, b2, and Z2 − z1 has a path B
between b1 and b2 and independent from z2.

Since the two statements of (3) are symmetric, we only prove the existence of B1, B2, B. If
b1 = b2 = z2 then we simply take B1 = B2 = B = {z2}. So we may assume b1, b2, z2 are
pairwise distinct (and hence (ii) or (iii) occurs).

If B1, B2 do not exist, then Z2 − z1 has a cut vetex z′2 separating {b1, b2} from {x, z2}; and
we see that Sy1

, Sy2
, S′

v := {z1, z
′
2} contradict (2).

Now suppose the path B does not exist. Then z2 is a cut vertex in Z2 − z1 separating b1

and b2. If (ii) occurs then S = {z1, z2} is a cut in R such that y1, y2, v are contained in different
components of G − S, contradicting (2). If (iii) occurs then S′

y1
:= {a1, z2}, S′

y2
:= {a2, z2}

and Sv are cuts in R contradicting (2). This completes the proof of (3).

Since R is 2-connected, for each u ∈ {y1, y2, v}, R[Du∪Su] is a chain of blocks between the
vertices of Su, and there is a path Pu in R[Du ∪Su] between the vertices of Su and containing
u. Let P i

u denote the subpath of Pu from u to Su ∩ Zi.

(4) We may assume that N(zi)∩ (X−{x1, x2, v}) = ∅ for i = 1, 2, and that Dv is connected.

Suppose (4) fails. By symmetry, we may assume N(z1) ∩ (X − {x1, x2, v}) 6= ∅. Then we can
find a path P from z1 to a ∈ V (x1Xv)−{x1, v} and internally disjoint from X∪Py1

∪Py2
∪Pv,

as follows. If N(z1) ∩ V (X − {x1, x2, v}) 6= ∅ let a ∈ N(z1) ∩ V (x1Xv − {x1, v}) and let
P := z1a. If Dv is not connected, then let D be a component of Dv such that v /∈ D.
Since G is 5-connected, there exists a ∈ N(D) ∩ V (x1Xv − {x1, v}). Let P be a path in
R[V (D) ∪ Sv ∪ {a}] − z2 from z1 to a.

Choose A1, A2, B as in (3) with x = z1. Then (A1 ∪ P 1
y1

) ∪ (A2 ∪ P 1
y2

) ∪ (P 1
v ∪ vx2) ∪ (P ∪

aXx1)∪ (P 2
y1
∪B∪P 2

y2
)∪G[{x1, x2, y1, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z1.

This proves (4).

Note that N(Dv) ⊆ Sv∪X. Let u ∈ N(Dv)∩V (X) with x1Xu minimal, and let u′ ∈ N(u)∩
V (Dv). Since {z1, z2, u, x2} is not a cut in G, there exists an edge cc′ with c ∈ uXx2 −{x2, u}
and c′ ∈ (Dy1

∪ Dy2
∪ Z1 ∪ Z2) − {z1, z2}. Note that c 6= v, for otherwise Sv is not a 2-cut in

R separating Dv from Dy1
∪ Dy2

∪ Z1 ∪ Z2. So c ∈ uXv − {u, v}. Since X is induced, u′ 6= v.
Hence by (4), let Qu′ denote a path in Dv from u′ to w ∈ V (Pv) such that Qu′ ∩ Pv = {w}.
By symmetry, we may assume w ∈ P 2

v . Note w 6= z2, since Dv is connected.

(5) We may assume that N(c) ∩ V (Z1) = ∅ when Z1 6= Z2 or when b1 = b2 = z2, and we
may assume that if x ∈ N(c) ∩ V (Dyi

) then for any path Px in R[Dyi
∪ Syi

] from x to
Pyi

, Px intersects P 2
yi
− yi first.
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First, suppose x ∈ N(c) ∩ Z1 and Z1 6= Z2 or b1 = b2 = z2. By (4), x 6= z1 and x 6= z2; and so
Z1 6= {z1}. Let A1, A2 be the paths as in (3), and by symmetry we may assume x ∈ A1 and
a1 ∈ A1. Let B = {z2} if Z1 = Z2 and b1 = b2 = z2, and otherwise let B be the path as in (3).
Then (vP 2

v w ∪Qu′ ∪ u′u∪ uXx1)∪ vx2 ∪ (vXc∪ cx∪A1 ∪P 1
y1

)∪ (P 1
v ∪A2 ∪P 1

y2
)∪ (P 2

y1
∪B ∪

P 2
y2

) ∪ G[{x1, x2, y1, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, v.
Now suppose x ∈ N(c)∩V (Dyi

), and there is a path Ri in R[Dyi
∪Syi

] from x to x′ ∈ V (P 1
yi

)
such that Ri ∩Pyi

= {x′}. Without loss of generality, assume i = 1. Choose B as in (3). Also
by (3), let A2 be a path in Z1 − z2 from z1 to a2 and independent from A1 = {a1}. Note
that if Z1 6= Z2 then B ∩ (A1 ∪ A2) = ∅; and if Z1 = Z2 then either a1 = a2 = z1 (with
A1 = A2 = {z1}) or b1 = b2 = z2 (B = {z2}),and we have B ∩ (A1 ∪ A2) = ∅ as well.

Then (vP 2
v w ∪ Qu′ ∪ u′u ∪ uXx1) ∪ vx2 ∪ (vXc ∪ cx ∪ R1 ∪ x′P 1

y1
y1) ∪ (P 1

v ∪ A2 ∪ P 1
y2

) ∪
(P 2

y1
∪ B ∪ P 2

y2
) ∪ G[{x1, x2, y1, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, v.

(6) We may assume that N(c) ∩ V (Dy1
∪ Dy2

∪ Z1 ∪ Z2) = {c′}.

Otherwise, we may assume by (4) and (5) that there exists a ∈ N(c) ∩ V (Dy1
∪ Dy2

∪ (Z2 −
{z1, z2})) such that a 6= c′.

Suppose {a, c′} ⊆ Z2−{z1, z2}. Then only (ii) or (iii) can occur. First, assume Z2− z1 has
disjoint paths B′

1, B
′
2 from {a, c′} to b1, b2, respectively. Then b1 6= b2, and hence, either Z1 6=

Z2 or Z1 = Z2 and a1 = a2 = z1. So let A := {z1} if Z1 = Z2 and a1 = a2 = z1; otherwise let A
be the path in (3). Now {y1, y2, c} is contained in the cycle B′

1∪B′
2∪Py1

∪Py2
∪A∪{c, cc′, ca}

in G− V (X − c), contradicting (1). Therefore, we may assume that such paths B′
1, B

′
2 do not

exist for any choice of {a, c′} with {a, c′} ⊆ Z2 − {z1, z2}. Then by (2), there is a cut vertex
z in Z2 − z1 separating N(c) ∩ Z2 from {b1, b2}. Suppose Z1 6= Z2. Since R is 2-connected, z
must separate {b1, b2} from (N(z)∩Z2)∪{z2}. But then S′

v := {z, z1}, Sy1
, Sy2

contradict (2).
So Z1 = Z2, and hence by (5), a1 = a2 = z1. If z2 is in the z-bridge of Z2 that also contains
N(c) ∩ Z2, then S′

v := {z, z1}, Sy1
, Sy2

contradict (2). So in Z2 − z1, z separates {b1, b2, z2}
from N(c) ∩ Z2. Note that c′ 6= z or a 6= z. Without loss of generality, assume c′ 6= z. Then
since R is 2-connected, Z2 contains disjoint paths R1, R2 from z1, b1 to c′, b2, respectively. Now
(R1 ∪ cc′ ∪ x1Xc) ∪ (P 1

v ∪ vx2) ∪ P 1
y1

∪ P 1
y2

∪ (P 2
y1

∪ R2 ∪ P 2
y2

) ∪ G[{x1, x2, y1, y2}] is a TK5 in
G with branch vertices x1, x2, y1, y2, z1.

So we may assume {a, c′} 6⊆ Z2 − {z1, z2}. Then N(c) ∩ V (Dy1
∪ Dy2

) 6= ∅ (by (4) when
Z1 = Z2, and by (4) and (5) when Z1 6= Z2). So we may assume by symmetry that c′ ∈ Dy1

.
Let Pc′ be a path in Dy1

from c′ to c′′ ∈ V (Py1
) such that Pc′∩Py1

= {c′′}. By (5), c′′ ∈ P 2
y1
−y1.

Suppose a ∈ Dy2
∪ (Z2 − {z1, z2}). If a ∈ Dy2

then by (5) there exists a path Pa in Dy2

from a to a′ ∈ V (Py2
) such that Pa ∩ Py2

= {a′} and a′ ∈ P 2
y2

− y2. Recall the path A from
(3). Now {c, cc′, ca} ∪ Pc′ ∪ c′′Py1

a1 ∪ A ∪ a2Py2
a′ ∪ Pa is a cycle in G − V (X − c) containing

{y1, y2, c}, contradicting (1). If a ∈ Z2 − {z1, z2}, then there is a path Pa in Z2 − z1 from a
to b2. Again, {c, cc′, ca} ∪ Pc′ ∪ c′′Py1

a1 ∪ A ∪ Py2
∪ Pa is a cycle in G − V (X − c) containing

{y1, y2, c}, contradicting (1).
So we may assume a ∈ Dy1

. Since R[Sy1
∪ Dy1

] is a chain of blocks, it has disjoint paths
Pa, Pc′ from a, c′ to a′, c′′ ∈ V (Py1

) such that Pa ∩ Py1
= {a′} and Pc′ ∩ Py1

= {c′′}. By
(5), we have {a′, c′′} ⊆ P 2

y1
. Without loss of generality, we may assume that a′ ∈ b1P

2
y1

c′′. If
Z1 = Z2 and z1 = a1 = a2 let A = {z1} and B be as in (3); if Z1 = Z2 and b1 = b2 = z2

then let B = {z2} and A be as in (3); and if Z1 6= Z2 let A and B be as in (3). Then

10



{c, cc′, ca} ∪ Pc′ ∪ c′′Py1
a1 ∪ A ∪ Py2

∪ B ∪ a′Py1
b1 ∪ Pa is a cycle in G − V (X − c) containing

{y1, y2, c}, contradicting (1) and completing the proof of (6).

By (6), N(c) ∩ V (Dv − Sv) 6= ∅. Without loss of generality and by (5) and (6), we may
assume that c′ ∈ Dy1

∪ (Z2 − {z1, z2}). Moreover, if c′ ∈ Dy1
, let Pc′ be a path in Dy1

from c′

to c′′ ∈ V (Py1
) such that Pc′ ∩ Py1

= {c′′} and c′′ ∈ P 2
y1

− y1 (by (5)).

(7) We may assume that v is a cut-vertex of R[Sv ∪ Dv] − z1z2 separating z2 from (N(c) ∩
V (Dv)) ∪ {z1}.

Otherwise, since R[Sv ∪ Dv] − z1z2 is a chain of blocks from z1 to z2, there is a path Pa in
R[Sv ∪ V (Dv)] − {v, z1} from some a ∈ N(c) ∩ V (Dv − v) to z2.

Suppose c′ ∈ Dy1
. If Z1 = Z2 and a1 = a2 = z1 let A = {z1} and P be a path in

Z2 − z1 from z2 to b2; if Z1 = Z2 and b1 = b2 = z2 let P = {z2} and A be as in (3); and if
Z1 6= Z2, let A be as in (3) and P be a path in Z2 − z1 from z2 to b2. It is easy to see that
{c, cc′, ca} ∪ Pa ∪ P ∪Py2

∪A∪ a1Py1
c′′ ∪ Pc′ is a cycle in G− V (X − c) containing {y1, y2, c},

contradicting (1).
So c′ ∈ Z2 − {z1, z2}. Then by (5), Z1 6= Z2, or Z1 = Z2 and a1 = a2 = z1. If Z1 6= Z2 let

A,B1, B2 be as in (3); and otherwise let A = {z1}, and let B1, B2 be as in (3) with c′ ∈ B1 and
b1 ∈ B1. Now {c, cc′, ca} ∪Pa ∪B2 ∪Py2

∪A∪ Py1
∪B1 is a cycle in G− V (X − c) containing

{y1, y2, c}, contradicting (1).

Let T denote the v-bridge of R[Sv ∪ Dv] − z1z2 containing z2. Recall u, u′, and u′ 6= v
(before (5)). Since w ∈ P 2

v ⊆ T , u′ ∈ T − v. Since G is 5-connected and by the choice of u,
G[V (T )∪V (uXx2)] is (5, V (uXx2)∪{z2, v})-connected, and so G′ := G[V (T )∪V (uXx2 −u)]
is (4, V (uXx2 −u)∪{z2, v})-connected. So by Lemma 2.5, there exist four independent paths
P1, P2, P3, P4 in G′ from u′ to (uXx2 − u) ∪ {z2, v} such that P1 ends at z2, P2 ends at v,
and P3, P4 both end in uXx2 − {u, v}. Since vx2 ∈ E(X), we may assume that P3 ends at
x′ ∈ V (uXv) − {u, v}.

Suppose c′ ∈ Dy1
. If Z1 = Z2 and a1 = a2 = z1 let A = {z1} and let B′

2 be a path in
Z2 − z1 from z2 to b2; if Z1 = Z2 and b1 = b2 = z2 let B′

2 = {z2} and A be as in (3); and if
Z1 6= Z2 let A be as in (3) and B′

2 be a path in Z2 from z2 to b2. Now (u′u ∪ uXx1) ∪ (P1 ∪
B′

2 ∪ P 2
y2

) ∪ (P2 ∪ vx2) ∪ (P3 ∪ x′Xc ∪ Pc′ ∪ c′′P 2
y1

y1) ∪ (P 1
y1

∪ A ∪ P 1
y2

) ∪ G[{x1, x2, y1, y2}] is a
TK5 in G with branch vertices x1, x2, y1, y2, u

′.
So we may assume c′ ∈ Z2 −{z1, z2}. Then by (5), Z1 6= Z2, or Z1 = Z2 and a1 = a2 = z1.

If Z1 = Z2 and a1 = a2 = z1 let A = {z1}; if Z1 6= Z2 let A be defined as in (3). Let B1, B2 be
defined as in (3) (with c′ as x). If z2 ∈ B2 and c′ ∈ B1, then (u′u∪ uXx1) ∪ (P1 ∪B2 ∪ P 2

y2
)∪

(P2 ∪ vx2) ∪ (P3 ∪ x′Xc ∪ cc′ ∪ B1 ∪ b1P
2
y1

y1) ∪ (P 1
y1

∪ A ∪ P 1
y2

) ∪ G[{x1, x2, y1, y2}] is a TK5

in G with branch vertices x1, x2, y1, y2, u
′. If z2 ∈ B1 and c′ ∈ B2, then (u′u ∪ uXx1) ∪ (P1 ∪

B1 ∪ P 2
y1

) ∪ (P2 ∪ vx2) ∪ (P3 ∪ x′Xc ∪ cc′ ∪B2 ∪ b2P
2
y2

y2)∪ (P 1
y1

∪A ∪ P 1
y2

)∪G[{x1, x2, y1, y2}]
is a TK5 in G with branch vertices x1, x2, y1, y2, u

′.

4 Planar graphs

In this section we prove Theorem 1.2, using an approach similar to that in [22] where rooted
K4-subdivisions are considered. This result will be useful in situations where we force a 5-
separation in a 5-connected nonplanar graph such that one side of the separation is planar.
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It is well known that every face of a 2-connected plane graph is bounded by a cycle. The
outer cycle of a 2-connected plane graph is the boundary of its infinite face. In a plane graph,
two vertices are said to be cofacial if they are incident with a common face. Let C be a cycle
in a plane graph and x, y ∈ V (C); if x 6= y we use xCy to denote the path in C clockwise from
x to y, and if x = y then xCy represents the path consisting of the vertex x = y. For a vertex
x in a graph, we use d(x) to denote the degree of x.

Lemma 4.1 Let G be a graph drawn in a closed disc in the plane without edge crossings,
and let a1, a2, a3, a4, a5 be distinct vertices of G on the boundary of the disc, and let A :=
{a1, a2, a3, a4, a5}. Suppose G is (5, A)-connected and |V (G)| ≥ 7. Then G−A is 2-connected,
and G − A is not spanned by its outer cycle. Moreover, for each w ∈ V (G) − A which is not
on the outer cycle of G−A, all vertices of G that are cofacial with w induce a cycle in G−A.

Proof. Without loss of generality we may assume that a1, a2, a3, a4, a5 lie on the boundary of
the disc in the clockwise order listed. Since G is (5, A)-connected, d(v) ≥ 5 for all v ∈ G − A.

First, we claim that G − A is connected and has no cut vertex. Otherwise, there is a
separation (G1, G2) in G − A of order at most 1 such that G1 − G2 6= ∅ and G2 − G1 6= ∅.
Note that |N(G1 − G2) ∩ A| ≥ 4 since otherwise V (G1 ∩ G2) ∪ (N(G1 − G2) ∩ A) is a cut in
G separating A from G1, contradicting the assumption that G is (5, A)-connected. Therefore,
by planarity, we may assume (with appropriate notation change) that a1, a2, a3, a4 all have
neighbors in G1 − G2. Then by planarity we see that {a4, a5, a1} ∪ V (G1 ∩ G2) is a cut in G
separating G2 from A, a contradiction (since G is (5, A)-connected).

Therefore, G−A ∼= K2 or G−A is 2-connected. Indeed, G−A must be 2-connected. For,
suppose G − A ∼= K2. Let V (G − A) = {a, b}. Then |N(a) ∩ A| ≥ 4, or else (N(a) ∩ A) ∪ {b}
is a cut of size at most 4 separating A from b, a contradiction. Similarly, |N(b) ∩ A| ≥ 4.
However, this contradicts planarity.

Let C denote the outer cycle of G−A. We now show that V (G−A) 6= V (C). For, suppose
V (G − A) = V (C); we will derive a contradiction. If |V (C)| = 3, then each vertex in V (C)
has at least 3 neighbors in A, which is not possible due to planarity. So |V (C)| ≥ 4. Since all
edges of G−A are on C or inside C, it follows from planarity that there are two vertices on C
with degree 2 in G−A, say u and v, such that uv /∈ E(G). Since G is (5, A)-connected and by
planarity, we may assume a1, a2, a3 ∈ N(u) and a3, a4, a5 ∈ N(v); and hence no other vertex of
G−A has degree 2, and each edge of G−A not on C joins uCv−{u, v} to vCu−{u, v}. Since
G is (5, A)-connected and ua3, va3 ∈ E(G), |N(z) ∩ V (C)| ≥ 4 for all z ∈ uCv − {u, v}. Let
w be the neighbor of u in uCv −{u, v}, and let w1, w2 denote neighbors of w on vCu−{v, u}
with v,w1, w2, u on vCu in order and w1Cw2 maximal. Let w′

2, w
′′
2 be the neighbors of w2 in

w1Cu. Then by planarity and the fact that d(w2) ≥ 5, N(w2) = {w′
2, w

′′
2 , w, a1, a5}. Because

d(w1) ≥ 5 and a1 /∈ N(w1) (by planarity), there exists x ∈ wCv−{w, v} such that x ∈ N(w1).
Then we may pick y ∈ xCv − v such that yCv minimal and y has a neighbor in vCw1 − v.
By planarity and the fact d(y) ≥ 5, |N(y) ∩ V (C)| ≥ 4. Let y1, y2 denote neighbors of y on
vCw1 − v with v, y1, y2, w1 on vCw1 in order. Let y′1, y

′′
1 be the neighbors of y1 in vCw1. Then

by planarity, N(y1) ⊆ {y, y′1, y
′′
1 , a5}, contradicting d(y1) ≥ 5.

Let w ∈ V (G − A) such that w /∈ C. Then, since G is (5, A)-connected and by planarity,
the vertices of G that are cofacial with w induce a cycle in G − A.
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Lemma 4.2 Let G be a connected graph drawn in a closed disc in the plane without edge
crossings, let a1, a2, a3, a4, a5 be distinct vertices of G on the boundary of the disc, and let
A = {a1, a2, a3, a4, a5}. Suppose G is (5, A)-connected and |V (G)| ≥ 7, and assume G has no
5-separation (G1, G2) such that A ⊆ G1 and |V (G)| > |V (G2)| ≥ 7. Let w ∈ V (G) − A such
that the vertices of G cofacial with w induce a cycle Cw in G−A. Then there exist four paths
P1, . . . , P4 from w to A such that

(i) for 1 ≤ i < j ≤ 4, V (Pi ∩ Pj) = {w}, and

(ii) for 1 ≤ i ≤ 4, |V (Pi ∩ Cw)| = 1.

Proof. By assumption, we have

(1) G has no 5-separation (G1, G2) such that A ⊆ G1 and |V (G)| > |V (G2)| ≥ 7.

By Lemma 4.1, G − A is 2-connected. So |V (G) − A| ≥ 3. Hence by (1), each ai has at
least two neighbors in G − A, and so G is 2-connected. Let C denote the outer cycle of G,
and let C ′ denote the outer cycle of G − A. By Lemma 4.1 again, there exists w ∈ V (G) − A
such that the vertices of G which are cofacial with w induce a cycle Cw and Cw ⊆ G−A. By
planarity, w /∈ C ′.

By Menger’s theorem, there exist four paths Q1, . . . , Q4 from w to A such that V (Qi∩Qj) =
{w} for 1 ≤ i 6= j ≤ 4, and for each i (by planarity, we may assume that) Qi ∩ Cw is a path.
Let α(Q1, Q2, Q3, Q4) denote the number of Qi such that |V (Qi ∩ Cw)| ≥ 2. We choose such
Q1, Q2, Q3, Q4 that

(2) α(Q1, Q2, Q3, Q4) is minimum.

We may assume that the notation is such that ai ∈ Qi for i = 1, . . . , 4, and that a1, a2, a3, a4

occur on the boundary of the disc in clockwise order (a5 could be anywhere on C). Let
wi, vi ∈ V (Qi) such that wwi ∈ Qi and V (viQiai ∩ Cw) = {vi}.

If α(Q1, Q2, Q3, Q4) = 0, then Pi := Qi, 1 ≤ i ≤ 4, are the desired paths. So we may
assume without loss of generality that |V (Q1 ∩ Cw)| ≥ 2. By symmetry, we may further
assume that v1 ∈ w1Cww2. See Figure 2 for an illustration. We may also assume that w has
no neighbor in w1Cwv1 − w1; for otherwise let w′ be a neighbor of w in w1Cwv1 − w1 with
w′Cv1 minimal, and we may replace Q1 with w′Q1a1 + {w,ww′}.

For 1 ≤ i ≤ 4, let Hi denote the maximal subgraph of G contained in the closed region
in the plane with boundary Qi ∪ Qi+1 ∪ aiCai+1 ∪ wiCwwi+1, where Q5 = Q1, a5 = a1 and
w5 = a1. Let S1 denote the vertices of G, each of which is cofacial with some vertex of
w1Cwv1 − w1. Then

(3) S1 ∩ V (v4Cww1 − w1) = ∅, and S1 ∩ V (v4Q4a4 − v4) 6= ∅.

If S1 ∩ V (v4Cww1 − w1) 6= ∅, then there exist x ∈ V (v4Cww1 − w1) and y ∈ V (w1Cwv1 − w1)
such that {x, y,w} is a cut in G separating w1 from {a1, a2, a3, a4}. Since a5 /∈ Cw, w1 6= a5.
So {x, y,w, a5} is a cut in G separating w1 from A, contradicting the assumption that G is
(5, A})-connected. So S1 ∩ V (v4Cww1 − w1) = ∅.
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Figure 2: Structure of G around w.

Now suppose S1 ∩ V (v4Q4a4 − v4) = ∅. Then by planarity H4 has a path Q′
1 from w1 to

a1 disjoint from Q4 ∪ (Cw −w1). Now α(w1Q
′
1a5 + {w,ww1}, Q2, Q3, Q4) < α(Q1, Q2, Q3, Q4),

contradicting (2). So S1 ∩ V (v4Q4a4 − v4) 6= ∅, completing the proof of (3).

Let S4 denote the vertices of G each of which is cofacial with a vertex in S1∩V (v4Q4a4−v4).
Then

(4) S4 ∩ V (v3Cwv4) = ∅, and S4 ∩ V (v3Q3a3 − v3) 6= ∅.

Suppose there exists u ∈ S4 ∩ V (v3Cwv4). Then there exist u4 ∈ S1 ∩ V (v4Q4a4 − v4) and
v ∈ V (w1Cwv1 − w1) such that u and u4 are cofacial, and u4 and v are cofacial. Note that
{u, u4, v, w} is a cut in G; so, since G is (5, A)-connected, {u, u4} ⊆ C and a5 ∈ uCu4, or
{u4, v} ⊆ C and a5 ∈ u4Cv. If w1a5 /∈ E(G), then the cut {u, u4, v, w, a5} contradicts (1) (as
w1 has at least 5 neighbors); if w1a5 ∈ E(G) then α(ww1a5, Q2, Q3, Q4) < α(Q1, Q2, Q3, Q4),
contradicting (2). Hence, S4 ∩ V (v3Cwv4) = ∅.

Now assume S4 ∩ V (v3Q3a3 − v3) = ∅. Then by planarity and by the fact that S4 ∩
V (v3Cwv4) = ∅, there is a path Q′

4 in H3 − (S1 ∩ V (Q4)) from v4 to a4 disjoint from Q3 and
Cw−v4. Moreover, by (3) and planarity, H4−V (Q′

4) has a path Q′
1 from w1 to a1 disjoint from

Cw−w1 (which necessarily contains S1∩V (Q4)). Then α(Q′
1+{w,ww1}, Q2, Q3, Q

′
4∪wQ4v4) <

α(Q1, Q2, Q3, Q4), contradicting (2) and completing the proof of (4).

Let S3 denote the vertices of G each of which is cofacial with a vertex in S4∩V (v3Q3a3−v3).
Then

(5) S3 ∩ V (v2Cwv3) = ∅, and S3 ∩ V (v2Q2a2 − v2) 6= ∅.

First, suppose there exists u ∈ S3 ∩ V (v2Cwv3). Then there exist u3 ∈ S4 ∩ V (v3Q3a3 − v3),
u4 ∈ S1 ∩ V (v4Q4a4 − v4), and v ∈ V (w1Cwv1 − w1) such that u and u3 are cofacial, u3 and
u4 are cofacial, and u4 and v are cofacial. Choose u, u3, u4, v so that uCwv3, v3Q3u3, v4Q4u4,
and w1Cwv are minimal (in the order listed).

Let H ′
2 denote the {u, u3}-bridge of H2 containing uCwv3; let H ′

3 denote the {u3, u4}-bridge
of H3 containing v3Cwv4; and let H ′

4 denote the {u4, v}-bridge of H4 containing v4Cwv. Note
that {u, u3, u4, v, w} is a cut in G; so by (1), a5 ∈ H ′

i for some 2 ≤ i ≤ 4.
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Suppose a5 ∈ H ′
2. Then in H2 − Q2 there is a path Q′

3 from v3 to a5 disjoint from
S4∩V (v3Q3u3−v3) and (Cw−v3)∪u3Q3a3 (by minimality of uCwv3 and v3Q3u3). In H3−Q′

3

there is a path Q′
4 from v4 to a3 disjoint from S1∩V (v4Q4u4 − v4) and (Cw − v4)∪u4Q4a4 (by

(4) and minimality of v4Q4u4). In H4 − V (Q′
4) there is a path Q′

1 from w1 to a4 disjoint from
Cw − w1 (by (3) and minimality of w1Cwv). Then α(Q′

1 + {w,ww1}, Q2, Q
′
3 ∪ wQ3v3, Q

′
4 ∪

wQ4v4) < α(Q1, Q2, Q3, Q4), contradicting (2).
Now assume a5 ∈ H ′

3. In H2 − Q2 there is a path Q′
3 from v3 to a3 disjoint from S4 ∩

V (v3Q3u3 −{u3, v3}) and Cw − v3 (by minimality of uCwv3 and v3Q3u3). In H3 −Q′
3 there is

a path Q′
4 from v4 to a5 disjoint from S1∩V (v4Q4u4− v4) and (Cw − v4)∪u4Q4a4 (by (4) and

minimality of v4Q4u4). In H4−V (Q′
4) there is a path Q′

1 from w1 to a4 disjoint from Cw −w1

(by (3) and minimality of w1Cwv). Then α(Q′
1 + {w,ww1}, Q2, Q

′
3 ∪ wQ3v3, Q

′
4 ∪ wQ4v4) <

α(Q1, Q2, Q3, Q4), contradicting (2).
Finally, assume a5 ∈ H ′

4. In H2 − Q2 there is a path Q′
3 from v3 to a3 disjoint from

S4 ∩ V (v3Q3u3 − {u3, v3}) and Cw − v3 (by minimality of uCwv3 and v3Q3u3). In H3 − Q′
3

there is a path Q′
4 from v4 to a4 disjoint from S1∩V (v4Q4u4−{v4, u4}) and Cw−v4 (by (4) and

minimality of v4Q4u4). In H4−V (Q′
4) there is a path Q′

1 from w1 to a5 disjoint from Cw −w1

(by (3) and minimality of w1Cwv). Then α(Q′
1 + {w,ww1}, Q2, Q

′
3 ∪ wQ3v3, Q

′
4 ∪ wQ4v4) <

α(Q1, Q2, Q3, Q4), contradicting (2). This proves S3 ∩ V (v2Cwv3) = ∅.
We now prove S3 ∩ V (v2Q2a2 − v2) 6= ∅. For, otherwise, H2 − V (Q2) has a path Q′

3 from
v3 to a3 disjoint from S4∩V (Q3) and Cw − v3 (since S3∩V (v2Cwv3) = ∅). In H3−Q′

3 there is
a path Q′

4 from v4 to a4 disjoint from S1 ∩ V (Q4) and Cw − v4 (by (4)). In H4 − V (Q′
4) there

is a path Q′
1 from w1 to a1 disjoint from Cw − w1 (by (3)). Now α(Q′

1 + {w,ww1}, Q2, Q
′
3 ∪

wQ3v3, Q
′
4 ∪ wQ4v4) < α(Q1, Q2, Q3, Q4), contradicting (2) and completing the proof of (5).

Let S2 denote the vertices of G each of which is cofacial with a vertex in S3∩V (Q2). Then

(6) S2 ∩ V (v1Cwv2) 6= ∅.

Suppose S2∩V (v1Cwv2) = ∅. Then S2∩V (v1Q1a1−v1) 6= ∅. For, otherwise, in H1−Q1 there is
a path Q′

2 from v2 to a2 disjoint from S3∩V (Q2) and Cw−v2. In H2−Q′
2 there is a path Q′

3 from
v3 to a3 disjoint from S4∩V (Q3) and Cw−v3 (by (5)). In H3−Q′

3 there is a path Q′
4 from v4 to

a4 disjoint from S1∩V (Q4) and Cw −v4 (by (4)). In H4−Q′
4 there is a path Q′

1 from w1 to a1

disjoint from Cw−w1 (by (3)). Now α(Q′
1 +{w,ww1}, Q

′
2∪wQ2v2, Q

′
3∪wQ3v3, Q

′
4∪wQ4v4) <

α(Q1, Q2, Q3, Q4), contradicting (2).
Thus, let u1 ∈ S2 ∩ V (v1Q1a1 − v1). Then there exists u2 ∈ S3 ∩ V (v2Q2a2 − v2) such

that u2 and u1 are cofacial, there exists u3 ∈ S4 ∩ V (v3Q3a3 − v3) such that u3 and u2 are
cofacial, there exists u4 ∈ S1 ∩ V (v4Q4a4 − v4) such that u4 and u3 are cofacial, and there
exists v ∈ V (w1Cwv1 − w1) such that u4 and v are cofacial. For i = 1, 2, 3, define H ′

i as the
{ui, ui+1}-bridge of Hi containing viCwvi+1. Define H ′

4 as the {v, u4}-bridge of H4 containing
v4Cwv1.

Then H ′
1 contains a path Q′

2 from v2 to u1 disjoint from S3 ∩V (Q2) and Cw − v2 (since we
assume S2∩V (v1Cwv2) = ∅). H ′

2−Q′
2 contains a path Q′

3 from v3 to u2 disjoint from S4∩V (Q3)
and Cw − v3 (by (5)). H ′

3 −Q′
3 contains a path Q′

4 from v4 to u3 disjoint from S1 ∩V (Q4) and
Cw−v4 (by (4)). H ′

4−Q′
4 contains a path Q′

1 from w1 to u4 disjoint from Cw−w1 (by (3)). Now
α((Q′

1+{w,ww1})∪u4Q4a4, wQ4v4∪Q′
4∪u3Q3a3, wQ3v3∪Q′

3∪u2Q2a2, wQ2v2∪Q′
2∪u1Q1a1) <

α(Q1, Q2, Q3, Q4), contradicting (2).

15



By (6) and by the definitions of Si (1 ≤ i ≤ 4), we may let u ∈ V (v1Cwv2) and u2 ∈
V (v2Q2a2 − v2) ∩ S3 such that u and u2 are cofacial and, subject to this, uCwv2 and v2Q2u2

are minimal. Let u3 ∈ V (v3Q3a3 − v3) ∩ S4 such that u2 and u3 are cofacial and, subject to
this, v3Q3u3 is minimal. Let u4 ∈ V (v4Q4a4 − v4) ∩ S1 such that u4 and u3 are cofacial and,
subject to this, v4Q4u4 is minimal. Let v ∈ V (w1Cwv1 − w1) such that v and u4 are cofacial.

Let H ′
1 denote the {u, u2}-bridge of H1 containing uCwv2; let H ′

2 denote the {u2, u3}-bridge
of H2 containing v2Cwv3; let H ′

3 denote the {u3, u4}-bridge of H3 containing v3Cwv4; and let
H ′

4 denote the {u4, v}-bridge of H4 containing v4Cwv.

(7) a5 /∈ H ′
i for 1 ≤ i ≤ 4.

The proof of (7) is similar to that of (5). First, suppose a5 ∈ H ′
1. Then there is a path Q′

2 in H1

from v2 to a5 disjoint from S3∩V (v2Q2u2−v2) and (Cw−v2)∪u2Q2a2 (by minimality of uCwv2

and v2Q2u2). In H2−Q′
2 there is a path Q′

3 from v3 to a2 disjoint from S4∩V (v3Q3u3−v3) and
(Cw−v3)∪u3Q3a3 (by (5) and minimality of v3Q3u3). In H3−Q′

3 there is a path Q′
4 from v4 to

a3 disjoint from S1∩V (v4Q4u4−v4) and (Cw−v4)∪u4Q4a4 (by (4) and minimality of v4Q4a4).
In H4−Q′

4 there is a path Q′
1 from w1 to a4 disjoint from Cw−w1 and Q1 (by (3) and minimality

of w1Cwv). Then α(Q′
1+{w,ww1}, wQ2v2∪Q′

2, wQ3v3∪Q′
3, wQ4v4∪Q′

4) < α(Q1, Q2, Q3, Q4),
contradicting (2).

Suppose a5 ∈ H ′
2. Then we find a path Q′

2 in H1 from v2 to a2 disjoint from Cw − v2 and
S3∩V (v2Q2u2−v2). In H2−Q′

2 we find a path Q′
3 from v3 to a5 disjoint from S4∩V (v3Q3u3−v3)

and (Cw−v3)∪u3Q3a3. In H3−Q′
3 we find a path Q′

4 from v4 to a3 disjoint from S1∩V (v4Q4u4−
v4) and (Cw−v4)∪u4Q4a4. In H4−Q′

4, we find a path Q′
1 from w1 to a4 disjoint from Cw−w1

and Q1. Then α(Q′
1 + {w,ww1}, wQ2v2 ∪ Q′

2, wQ3v3 ∪ Q′
3, wQ4v4 ∪ Q′

4) < α(Q1, Q2, Q3, Q4),
contradicting (2).

Now assume a5 ∈ H ′
3. Then there is a path Q′

2 in H1 from v2 to a2 disjoint from Cw − v2

and S3∩V (v2Q2u2−v2). In H2−Q′
2 there is a path Q′

3 from v3 to a3 disjoint from Cw−v3 and
S4∩V (v3Q3u3−v3). In H3−Q′

3 there is a path Q′
4 from v4 to a5 disjoint from S1∩V (v4Q4u4−v4)

and (Cw − v4) ∪ u4Q4a4. In H4 − Q′
4, we find a path Q′

1 from w1 to a4 disjoint from Cw − w1

and Q1. Then α(Q′
1 + {w,ww1}, wQ2v2 ∪ Q′

2, wQ3v3 ∪ Q′
3, wQ4v4 ∪ Q′

4) < α(Q1, Q2, Q3, Q4),
contradicting (2).

Finally, assume a5 ∈ H ′
4. Then we find a path Q′

2 in H1 from v2 to a2 disjoint from Cw−v2

and S3 ∩ V (v2Q2u2 − v2). In H2 − Q′
2 we find a path Q′

3 from v3 to a3 disjoint from Cw − v3

and S4 ∩ V (v3Q3u3 − v3). In H3 − Q′
3 we find a path Q′

4 from v4 to a4 disjoint from Cw − v4

and S1 ∩ V (v4Q4u4 − v4). In H4 −Q′
4, we find a path Q′

1 from w1 to a5 disjoint from Cw −w1

and Q1. Again, α(Q′
1 + {w,ww1}, wQ2v2 ∪Q′

2, wQ3v3 ∪Q′
3, wQ4v4 ∪Q′

4) < α(Q1, Q2, Q3, Q4),
contradicting (2) and completing the proof of (7).

Thus there exists w′ ∈ N(w) ∩ V (v1Cwu − u); for, otherwise, it follows from (7) that
{u, u2, u3, u4, v} is a cut in G separating A from w, contradicting (1). We choose such w′

that v1Cw′ is minimal. We now apply the arguments (3) – (7), using ww′ ∪ v1Cw′ ∪ v1Q1a1

(instead of Q1), Q2, Q3, Q4, and using counter clockwise order instead of clockwise order. As
a consequence and by planarity, there exist u′ ∈ V (v1Cw′), u′

2 ∈ V (u2Q2a2), u′
3 ∈ V (u3Q3a3),

u′
4 ∈ V (u4Q4a4), and v′ ∈ V (vCv1) such that u′ and u′

2 are cofacial, u′
2 and u′

3 are cofacial, u′
3

and u′
4 are cofacial, and u′

4 and v′ are cofacial. Moreover, if H ′′
i denote the {u′

i, u
′
i+1}-bridge of

Hi containing viCwvi+1, 1 ≤ i ≤ 4, with u′
1 = u′, u′

5 = v′ and v5 = v, then a5 /∈ H ′′
i . However,

{u′, u′
2, u

′
3, u

′
4, v

′} is a cut in G separating A from w, contradicting (1).
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Theorem 4.3 Let G be a graph drawn in a closed disc in the plane with no edge crossings,
let a1, a2, a3, a4, a5 be distinct vertices of G on the boundary of the disc in clockwise order, and
let A = {a1, a2, a3, a4, a5}. Suppose G is (5, A)-connected and |V (G)| ≥ 7. Then there exist
w ∈ V (G) − A, a cycle Cw in (G − A) − w, and four paths P1, . . . , P4 from w to A such that

(i) V (Pi ∩ Pj) = {w} for 1 ≤ i < j ≤ 4, and |V (Pi ∩ Cw)| = 1 for 1 ≤ i ≤ 4, and

(ii) there exist 1 ≤ i 6= j ≤ 4 such that a1 is an end of Pi and a5 is an end of Pj .

Proof. Assume the assertion is false, and let G be a counter example with |V (G)| minimal.
Then

(1) G has no 5-separation (G1, G2) such that A ⊆ G1 and |V (G)| > |V (G2)| ≥ 7.

For, suppose such a separation (G1, G2) does exist. By Menger’s theorem, there are five disjoint
paths R1, R2, R3, R4, R5 in G1 from V (G1 ∩ G2) to A. By choosing notation appropriately,
we may assume ai ∈ Ri for i = 1, . . . , 5. Let bi be the other end of Ri. Note that G2 is
(5, {b1, b2, b3, b4, b5})-connected. Then by the choice of G and by appropriate notation change,
there exist w ∈ V (G2) − {b1, b2, b3, b4, b5}, a cycle Cw in G2 − {w, b1, b2, b3, b4, b5}, and four
paths Q1, Q2, Q3, Q4 in G2 from w to {b1, b2, b3, b4, b5}, such that V (Qi ∩ Qj) = {w} for
1 ≤ i 6= j ≤ 4, |V (Qi ∩Cw)| = 1 for 1 ≤ i ≤ 4, and b1 ∈ Pi and b5 ∈ Pj for some 1 ≤ i 6= j ≤ 4.
Now Pi := Qi ∪ Ri, i = 1, . . . , 4, are the desired paths.

By Lemma 4.1, G − A is 2-connected. So |V (G) − A| ≥ 3. Hence by (1), each ai has
at least two neighbors in G − A, and so G is 2-connected. Let C,C ′ denote the outer cycles
of G,G − A, respectively. By Lemma 4.1 again, (G − A) − C ′ is nonempty, and for each
w ∈ V (G − A) − V (C ′), the vertices of G that are cofacial with w induce a cycle Cw, and
Cw ⊆ G − A. Thus, we may choose w so that whenever possible the following hold:

(2) if both a1 and a5 have exactly two neighbors on C ′ and a1 and a5 share a common
neighbor x with d(x) = 5, then wx /∈ E(G), and

(3) w and a1 have a common neighbor, or w and a5 have a common neighbor.

By Lemma 4.2, there exist paths P1, P2, P3, P4 from w to A such that V (Pi ∩ Pj) = {w}
for 1 ≤ i < j ≤ 4, and |V (Pi ∩Cw)| = 1 for 1 ≤ i ≤ 4. Let V (Pi ∩Cw) = {wi} for i = 1, 2, 3, 4.
If for some 1 ≤ i ≤ 4, |V (Pi)∩A| = 2 then we may replace it with its subpath between wi and
the vertex that is in A ∩ V (Pi) but is not an end of Pi. So we may assume that A 6⊆

⋃
4

i=1
Pi.

If a1 ∈ Pi and a5 ∈ Pj for some i 6= j, then the assertion of the theorem holds. So we may
assume by symmetry (between a1 and a5) that a1 /∈ Pi for 1 ≤ i ≤ 4. By changing notation
if necessary we may assume a2 ∈ P2, a3 ∈ P3, a4 ∈ P4 and a5 ∈ P1. See Figure 3 for an
illustration.

Note that P1, P2, P3, P4 divide the disc into four closed regions. Let Hi (for each 1 ≤ i ≤ 4)
denote the maximal subgraph of G − w contained in the closed region which has Pi and Pi+1

in its boundary, where P5 = P1. Then a1 ∈ H1 (by planarity). We may further assume that
the paths P1, P2, P3, P4 are chosen so that

(4) H1 is maximal.
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Figure 3: The regions divided by P1, P2, P3, P4.

We may assume that there does not exist a path R in H1 from a1 to some a ∈ V (P2) such
that (R− a)∩Cw = ∅, R∩P1 = ∅, and R∩P2 = {a}; for, otherwise, P1, wP2a∪R,P3, P4 give
the desired paths. So let v denote the vertex on w1Cww2−w2 such that there is a path P in G
from a1 to v disjoint from P1 ∪ (Cw − v), and subject to this, vCww2 is minimal. Then v ∈ C.
Also, we may assume wv /∈ E(G); or else P1, P + {w,wv}, P3 , P4 give the desired paths. We
claim that

(5) a4Ca5 ∩ (w4Cww1 − w1) = ∅.

For, otherwise, let b ∈ V (a4Ca5) ∩ V (w4Cww1 − w1). Then {b, w, v} is a cut in G separating
{w1, a1, a5} from {a2, a3, a4}. So by (1), b and w1 are the only neighbors of a5 on C, v and w1

are the only neighbors of a1 on C, and N(w1) = {a1, a5, b, v, w}. Let w′ ∈ N(v)∩V (Cw −w1).
Since d(v) ≥ 5 and wv /∈ E(G), w′ /∈ C. It is easy to see that w′ contradicts the choice of w
in (2) (but satisfies (3)). This completes the proof of (5).

Case 1. Suppose there exists a path Q from a1 to a ∈ V (P1) such that (Q − a) ∩ Cw = ∅,
Q ∩ P2 = ∅, and Q ∩ P1 = {a}.

Choose Q so that aP1w1 is minimal. If a4Ca5∩w1P1a = ∅, then by (5), P4∪a4Ca5 contains
a path P ′

4 from a5 to w such that P ′
4 ∩Cw = {w4}, and so Q∪aP1w,P2, P3, P

′
4 give the desired

paths.
Hence, we may assume a4Ca5 ∩ w1P1a 6= ∅. Then by (4), aP1a5 = aCa5. By (1), {a, v}

cannot separate {a5, a1} from Cw ∪ {a2, a3, a4}. Hence by the minimality of aP1w1, there is a
path R in H1−aCa5 from a1 to some u ∈ V (w1Cwv)−{w1, v}. We choose such u that w1Cwu
is minimal. We may assume wu /∈ E(G); or else R+{w,wu}, P2, P3, P4 give the desired paths.

Suppose w has a neighbor, say w′, in uCwv − {u, v}. Note that {a, u, v, w} is a cut of G;
and let H ′ denote the {a, u, v, w}-bridge of G containing a1 and a5. Then since G is (5, A)-
connected and by planarity (and also because of P and R), H ′ contains a path R′ from w′ to
a1 disjoint from (Cw − w′) ∪ aCa5. Now the assertion of the theorem holds with Cw and the
paths P1, R

′ + {w,ww′}, P2, P3.
Therefore we may assume that such w′ does not exist. Then {a, u, v} is a cut in G separating

{a1, a5} from {a2, a3, a4, w}. So by (1), there is a vertex x such that x and a are the only
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neighbors of a5 on C, x and v are the only neighbors of a1 on C, and N(x) = {a1, a5, a, u, v}.
Since d(u) ≥ 5 and wu /∈ E(G), we see that a 6= w1. So w has no common neighbor with any
of a1 and a5. Let w′ be the vertex in N(u) ∩ V (w1Cwu). Then w′x /∈ E(G), and w′ has a
common neighbor with a1. So w′ contradicts the choice of w in (3).

Case 2. There exist u, v ∈ V (w1Cww2)−{w1, w2} such that all paths from a1 to Cw must
intersect uC2v.

We choose such u and v so that uC2v is minimal. Then {u, v,w} is a 3-cut in G separating
a1 from other vertices. Since G is (5, A)-connected, the component of G−{u, v,w} containing
a1 has exactly one vertex. So by planarity, u and v are the only neighbors of a1 in G, and uv
is an edge of Cw. Thus u, v ∈ C.

If wu ∈ E(G) then wua1, P2, P3, P4 give the desired paths, and if wv ∈ E(G) then
P1, wva1, P3, P4 give the desired paths. So we may assume wu,wv /∈ E(G). In particular,
u 6= w1 and v 6= w2. Without loss of generality, we may assume w1, u, v, w2 occur on Cw in
this clockwise order.

Note that w and a5 have no common neighbor. For, otherwise, let b ∈ N(w)∩N(a5). Then
since d(u) ≥ 5 and wu /∈ E(G), {b, u,w, a5} is a cut in G, contradicting the assumption that
G is (5, A)-connected.

Let v1 ∈ V (Cw)−{u, v} such that v1v ∈ E(G). Since G is (5, A)-connected and wv /∈ E(G),
v1 /∈ C. By Lemma 4.1, the vertices of G which are cofacial with v1 induce a cycle in G − A.
Note that v1 has no common neighbor with a5 (i.e. satisfying (2)); however, v1 and a1 have v
as a common neighbor. So v1 contradicts the choice of w in (3).

Proof of Theorem 1.2. Let (G1, G2) be a 5-separation in G such that V (G1 ∩ G2) =
{a1, a2, a3, a4, a5} and |V (G)| > |V (G2)| ≥ 7. Moreover, assume that G2 may be drawn
in a closed disc in the plane without edge crossings such that a1, a2, a3, a4, a5 occur on the
boundary of the disc in clockwise order. Note that |G1| ≥ 2 (since G is not planar). Let
A = {a1, a2, a3, a4, a5}. We may choose (G1, G2) such that G2 is maximal. Then each ai has
at least two neighbors in G1, and A is an independent set in G1. Hence G1 −ai is 2-connected
for 1 ≤ i ≤ 5.

By Theorem 4.3, there exist w ∈ V (G) − A, a cycle Cw in (G − A) − w, and four paths
P1, P2, P3, P4 from w to A such that V (Pi ∩Pj) = {w} for 1 ≤ i < j ≤ 4, and |V (Pi ∩Cw)| = 1
for 1 ≤ i ≤ 4. Without loss of generality, we may assume that ai is an end of Pi, 1 ≤ i ≤ 4.

If G1 − a5 contains disjoint paths A1, A2 from a1, a2 to a3, a4, respectively, then Cw ∪P1 ∪
P2 ∪ P3 ∪ P4 ∪ A1 ∪ A2 is a TK5 in G.

So we may assume that such A1, A2 do not exist. By Theorem 2.2 and by the fact that G1

is (5, A)-connected, G1 − a5 can be drawn in a closed disc in the plane with no edge crossings
such that a1, a2, a3, a4 occur on the boundary of the disc in this cyclic order. Let C denote the
outer cycle of G1 − a5. Since G is nonplanar, a5 has at least one neighbor, say a, such that
a /∈ a4Ca1.

By Theorem 4.3 there exist paths Q1, Q2, Q3, Q4 from w to A such that V (Qi ∩Qj) = {w}
for 1 ≤ i < j ≤ 4, |V (Qi ∩ Cw)| = 1 for 1 ≤ i ≤ 4, a4 is an end of Q3, and a5 is an end of Q4.
Let as, at be the ends of Q1, Q2 with 1 ≤ s < t ≤ 3. If (G2 − a5) − a4Cas has a path R from
a to at, then Cw ∪ Q1 ∪ Q2 ∪ Q3 ∪ Q4 ∪ (R ∪ a5a) ∪ a4Cas is a TK5 in G.

So we may assume that such a path R does not exist. Then s = 2 and a ∈ a1Cas. By
Theorem 4.3 there exist paths R1, R2, R3, R4 from w to A such that V (Ri ∩ Rj) = {w} for
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1 ≤ i < j ≤ 4, |V (Ri ∩Cw)| = 1 for 1 ≤ i ≤ 4, a1 is an end of R1, and a5 is an end of R4. Let
as, at be the ends of R2, R3 with 2 ≤ s < t ≤ 4. Now Cw∪R1∪R2∪R3∪R4∪atCa1∪(a5a∪aCas)
is a TK5 in G.
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